
Calculating on a round planet 

Nicholas R. Chrisman 
professeur associé, sciences géomatiques, Université Laval, 

Québec, QC, Canada 

and 

Honorary Professor 

Geospatial Sciences, RMIT University, Melbourne, Australia 

School of Mathematical and Geospatial Sciences 

360 Swanston Street, Melbourne VIC 3000, Australia 

+1 360 933 4895 

nchrisman@fastmail.fm 

 

Abstract 

Despite incontrovertible scientific evidence to support a round Earth, GIS software 

implementation typically models the Earth with flat map projections. This choice has 

consequences that vary from mild to severe. This paper explores solutions that range 

from moderate measures to correct for map projection errors to radical revisions of 

standard practice that place all calculations on the ellipsoid. On examination, the best 

practice requires a distinct projection choice for each geometric operation. Multiple 

reasons, from the technical to ethical, justify revised practices and increased 

vigilance for the errors induced by inappropriate projections. 
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Introduction 

The Earth is round, and that fact should surprise nobody. Whether general acceptance 

occurred five hundred ago or two thousand years ago (Snyder, 1987, p.3) makes little 

difference to the current practice of geographic information technologies. Despite the 

overwhelming evidence for a round Earth, the software practices and technology of 

geographic information systems (GIS) remain firmly attached to flat surfaces, indexed by 

Cartesian coordinates. Tobler remarked some years ago that none of the textbooks on 

spatial analysis treated the Earth as ‘homeomorphic to a sphere’ (Tobler, 1993, p.19). 

Blindness to the obvious is thus not limited to software designers, but this paper will direct 

its attention to the software community and GIS practitioners. As one of the guilty parties 

who designed software in a prior era, I will discuss some of the reasons why the original 

developments were coded in planar geometry. Then I will describe the disadvantages and 

limitations of the current approach, and finally discuss the remedies and changes required 

to repair the damage and to start calculating on a round Earth. 

Calculating on a plane 

It is accepted practice to calculate in planar Cartesian coordinates in many fields from 



scientific disciplines such as physics to practical settings in engineering surveying. 

Analytical geometry, like all technology, has multiple origins. Descartes (1637) made 

significant contributions that established the notation and procedures that have become 

common (and therefore do not require citation by all but the most punctilious). For 

example, the naming of the coordinate axes as x,y,z was introduced in this monumental 

book (Descartes, 1887, p.10).  Descartes offered his mathematical presentation as a 

demonstration of his scientific method, one based on foundationalism. Descartes chose the 

plane to demonstrate the application of algebraic (hence numerical) treatment to the realm 

of geometry. This discipline had firm rules about construction limited to straight edges and 

compasses, a non-numerical approach. Descartes was not motivated by any urge to model 

the Earth, although the word geometry derives etymologically from Earth measurement.  

Subsequently, analytical geometry became an underpinning of many fields in 

science and engineering. A sign of this implicit acceptance comes in the school curriculum; 

this technology is introduced to young students around the world. What was a matter of 

natural philosophy became a routine matter for primary students [for instance: the 

controversial Common Core in the United States introduces planar coordinate systems in 

year 5 (Common Core, 2015); the English National Standards (Department of Education 

2013, p.29) introduce 2D coordinates in year 4]. Analytical geometry is taught in the planar 

case, typically, using just x and y axes; perimeter and area calculations are taught in 

primary school – in the case of England, year 5 (Department of Education, 2013, p. 36). As 

a mathematical exercise, it makes sense to work with simple models. Planar geometry 

allows simple calculations, providing a good fit for elementary teaching. 

Unlike the Earth, maps are flat, a property inherited from the various support 

technologies from parchment to printing presses to handheld tablet screens. Centuries of 

practice have established means to reduce measurements observed in the field (on ship or 

on land) to a portable planar surface. Mapping technique absorbed a series of technologies 

all dependent on graphics arts, from etching plates, lithography, and photographic 

reproduction. Each has been just as flat as its predecessor. Therefore, when early 

developments occurred in digital cartography, adopting a flat surface in numerical form 

was no big surprise. Planar geometry was embodied directly in the orthogonal axes of 

digitizer tables (Boyle, 1964) and in the software to reproduce maps on line-printers 

(Horwood et al., 1963). The choice had already been made, since these techniques were all 

built on digital conversion of the stock of printed maps. 

The first generation of automated cartography worked for the most part on single 

map sheets, not on massive worldwide databases. For the period, the choice was well-

justified. Even the Canada Geographic Information System (CGIS) (Tomlinson, 1968), 

with a vision to cover a continental extent, stuck close to the planar model of its raster 

scanner since each vector was reduced to incremental coordinates (Tomlinson, 1998, p. 23). 

Tomlinson attributes these codes to Galton, though they are more commonly termed 

‘Freeman codes’ in the computer graphics literature (Freeman, 1961). Wherever the origin, 

this technique lies on the plane.  

World Data Banks and cartographic projection software 

Not all data remained tied to a flat map. Early GIS and automated cartography built 

archives of data for whole continents and soon the whole World. In Canada, CGIS was 

conceived to cover a continent with a spatial index (Morton 1966). This index divided into 



degree-based units (in the illusion of planar geometry), then, inside each map sheet, it used 

planar coordinates for the linework (in incremental coordinates tied to a pixel on a flat 

map). Therefore, the actual area measurements were made in planar mode, not on a sphere 

or ellipsoid. 

In the same period, the US Central Intelligence Agency (CIA) developed World 

Data Bank I (WDB-I) in a very short period to respond to some short term needs (Schmidt, 

1969). Separate map sheets were digitized, and back-projected out of their specific 

projections into a homogenous framework of latitude-longitude. My own work was 

influenced by access to WDB-I, as I set out to convert it to a topological data structure 

(Chrisman, 2006, p.105). Working with this source, and its follow-on WDB-II (Anderson 

and others, 1977), led me to remark that WDB-II was ‘no more structured than spaghetti on 

a plate’ (Chrisman, 1974a, p. 167). However, I did not give them credit for representing the 

whole planet in an ellipsoidal frame of reference (latitude-longitude in radians). [The datum 

for WDB-I was not clearly specified, and its accuracy levels were probably not high 

enough to distinguish between the various geodetic datums of the period.] The CAM 

software (written by IBM for CIA) provided elaborately detailed sixth-order expansions for 

ellipsoidal projections (personal inspection of the source code, 1975). Still the goal was to 

produce printed maps using traditional reproduction technologies. Scribing onto peel-coat 

material was the preferred output, so it was not important to fill polygons. A cartographer 

would lift the inside of the polygon as required for the particular color scheme. This was an 

era of computer-assisted cartography, not attuned to thematic mapping driven by attribute 

tables, let alone a full GIS. 

In my own software, POLYVRT (Chrisman, 1974b), I implemented the capability 

to project these data sources into planar coordinates so polygons could be used by the 

existing cartographic packages of the era. None of this software (such as SYMAP) had any 

projection capability. I implemented projections on a spherical Earth model, using the 

formulae from textbooks such as Richardus and Adler (1972). Considering that the 

databases derived from sources with errors in the tens of kilometres, it made little sense to 

insist on geodetic accuracy. I used single-precision code for POLYVRT and much of my 

later work. On the 60-bit floating point hardware that I used for POLYVRT, that made for 

very little limitation. However, as the industry converged on a 32-bit word, single precision 

set practical limits on resolution and project extent (Chrisman, 1984). 

Software for cartographic projections (and their inverses) became one of the 

elements of the GIS toolkit. Snyder’s (1987) magisterial collection of map projections was 

written to support this development. The General Cartographic Transformation Package 

(GCTP) code written by ElAssal (1987) under the direction of Snyder permeated the 

industry, in part because it was placed in the public domain. These efforts used the full 

ellipsoidal derivations of cartographic projections required for topographic mapping. GCTP 

calculated entirely in double precision (64 bit) floating point, which was considered 

somewhat extravagant (for the era) though technically valid. Few software environments 

maintained 64-bit floating point resolution in storage until much later. 

Coding early GIS 

The software packages called GIS emerged in the 1980s from this background. The 

prototype ODYSSEY was written on timesharing computers like the Digital Equipment 

VAX (Chrisman, Dougenik and White, 1992). Storage was limited to single precision 



(effectively six digits of resolution), but we found that we needed to calculate intersections 

in double precision to avoid overflow and other computational issues. We used planar 

algorithms, expecting each project (and database) to be in some local coordinate system and 

projection. ODYSSEY implemented basic projections intended for visualization rather than 

precise georeferencing. Following the conversion to NAD83, I converted to much more 

sophisticated implementations in full 64-bit floating point and code from GCTP. 

As far as I can determine from outside the shield of non-disclosure agreements and 

license conditions, the commercial packages of the 1980s (ARC/INFO, System 9, 

Intergraph MGE) were just as limited to single precision floating point storage in the early 

implementations. Planar geometry was the rule, with only limited dissenters. Lukatela 

(1987) presented a geodetically adept computational framework called HIPARCHUS, to be 

discussed below.  

Current situation 

Since the mid-1980s when the first generation of GIS software emerged on workstation 

platforms, the speed of computing devices has increased by a factor of many thousand. The 

conceptual underpinnings of the software have barely budged. Computation still relies on 

projected planar coordinates. Official coordinate systems remain entrenched where they 

were in the 1930s- based on conformal map projections. Eventually, most software 

platforms moved to double precision, for reasons of resolution. 

One development in the 1990s bears some mention. GIS implementations began to 

rely on greater integration with database engines. To provide for indexing, floating point 

representations created troubles best solved by some form of integer coordinates. For 

example, Oracle Spatial originally used a latitude-longitude octree called the Helical 

Hyperspatial Code (Varma and others, 1990); ArcSDE imposed integer representation of 

coordinates. Granularity was often established by default, despite some consequences on 

project extent or resolution. In most cases, the database indexing requirement constrained 

choice of projections. The index was built one time, based on a particular reference frame. 

This index would not survive local rotation, often the result of changing projection. This 

limitation persists in more recent developments, as far as can be determined outside the 

cloak of product secrecy.  

Representing global coordinates 

As in many situations, convention plays a huge role in developing standards for geographic 

coordinates. ISO (International Standards Organization) and OGC (Open Geospatial 

Consortium) have combined to codify the practice of spatial referencing by coordinates 

[ISO 19111:2007 ; OGC (2010)]. 

The convention of positioning objects on the Earth with two angles dates back to 

Hipparchus (2nd Century BCE) and Claudius Ptolemy (150 CE). Latitude was easier to 

establish than longitude. The current system became worldwide with the 1884 international 

agreement on the Meridian of Greenwich (Howse, 1985). This angular notation has the 

weight of convention, but it does have peculiar numerical properties. Trigonometric 

functions (such as tangent) return useless (infinite) results at right angles, and therefore 

programmers must pay attention to avoid extraneous error messages and wild results.  

Certain programmers and GIS users over the years have blurred the distinction 

between a geodetic coordinate system and a Cartesian, projected coordinate system. If 



degrees are treated as distances, a distorted pseudo-projection results (often termed Plate 

Carrée). Of course, distances calculated by the Pythagorean Theorem from angular 

measures bear no relation to the Earth, and areas in square degrees are meaningless. This 

has not stopped whole scientific communities built upon around dubious databases of these 

so-called ‘square degrees’ (references suppressed to protect the guilty).  

Lukatela (1987; 2000 p. 118) has described a scheme for representing angular values 

of a geodetic point by the direction cosines of the ellipsoid normal. With this 

representation, useful properties can be computed without trigonometrical functions. In 

addition, fewer checks for valid operations (division by zero; infinite results) are required. 

While this representation may be technically superior, adoption remains limited. 

Much of modern geodetic calculations are not carried out with angular measures, but 

on a Cartesian triaxial system, centered on the center of mass of the Earth, measured in 

metres (IERS, 2013). Called the International Terrestrial Reference System (ITRS), it is 

implemented by the International Terrestrial Reference Frame (ITRF). ITRF is regularly 

redefined as more precise measurements become available. The international agreements 

behind ITRS and ITRF only date from 1991, and adoption by mapping authorities lagged 

due to attachment to local datums from prior eras. One tricky part of ITRF is the ‘no-net-

rotation’ condition, which is the attempt to remain Earth-Centered, Earth-Fixed (ECEF) in 

the face of tectonic movements. ITRF removes the safety of a firmly anchored brass marker 

as the origin of surveying. 

Geopositioning using satellite methods works in a Cartesian ECEF framework, since 

timing signals provide distances for trilateration. Geodetic XYZ does not recognize the 

surface of the ellipsoid in any special way. Distances calculated using Cartesian measures 

will cut through land, water, crust, mantle or atmosphere with no distinction. There is, 

consequently, no surface on which to measure area. It would take some massive rethinking 

of cartographic conventions to switch to Cartesian ECEF for GIS operations. Results 

obtained in geodetic XYZ are usually converted to angular coordinates on an established 

datum, then usually converted to projected coordinates (confusingly called xy (or more 

properly, Easting and Northing), though decidedly not on the same geodetic axes). 

Through some kind of collective amnesia, after all these manipulations the resulting 

projected coordinates become an infinite plane. The finite extent of the Earth is forgotten. 

As Tobler notes, working on the sphere is counter-intuitive:  

‘Should everyone know that the circumference of a circle increases as two pi times the 

sine of the radius, (which means it eventually goes to zero), and that the area of a circle 

increases in proportion to the square of the sine of one half of the circular radius? Or 

that the circumference of a circle on the surface of an ellipsoid depends not only on the 

circle’s radius but also on where one puts the center {Blaschke 1949}?’ (Tobler, 1993, 

p. 19, citing Blaschke, 1949) 

Many features of the actual round Earth overrule the simplicity of planar assumptions. This 

essay will review what goes wrong when GIS data gets separated from the Earth model, 

then present some solutions. 

What goes wrong 

Planar coordinate systems inevitably distort something (Grafarend et al., 2014, 1). 



Projection choice is fundamentally a choice of which property to preserve by distorting 

everything else. It also determines how difficult it will be to correct these distortions.  

Mercator-bashing has become a routine phenomenon in certain sectors. Journalists 

continue to present true areas as some kind of revelation (Taylor, 2015). Sadly, none of this 

attention reduces the dead weight of cylindric map projections on the GIS sector. Mercator 

is not the only projection that distorts. 

There are a few prominent cases where an error in understanding map projections 

has led to major mistakes. On 3 May 2003, The Economist (2003a) published an article 

showing circles around the missile base in North Korea. Due to a fundamental 

misunderstanding of the Mercator projection, these circles on the map presented a gross 

underestimate of the range of these weapons systems (still not operational according to the 

article). The Economist (2003b) issued a correction in twelve days with the subtitle ‘Flat-

earth thinking’ (with the result that the original mistake is no longer visible apart from 

bandit copies around the network). The Economist stayed with their projection choice, 

forcing a radically different geometry for missile ranges over the North Pole. A switch to an 

azimuthal equidistant projection would have permitted them to retain the circles of missile 

range. In an article dated 12 December 2012, The Economist (2012) had switched to an 

azimuthal for their repeat coverage of this topic. Figure 1 shows a similar image (from a 

Creative Commons source). Washington Post (Fisher, 2013) also choose an azimuthal 

projection. Perhaps the outcry of geospatial professionals may have actually reached 

through to the journalism sector. 

 

Figure 1 – around here 

There are other major policy issues that are influenced by calculating on the wrong 

surface. At the global scale, Usery and others (2003) consider the errors that accumulate in 

global datasets due to raster resolution interacting with projection issues. Many more local 

policies are implemented by a payment based on the area of the land parcel in question. As 

Nieverglet (1997, p. 2) illustrates with a quotation from the Rhind papyrus, the pharaohs of 

Egypt were concerned with measurement of area around 3700 years ago. Most North 

American jurisdictions assess a portion of property tax based on area of parcel. In the 

opposite fiscal direction, the Common Agricultural Policy of the European Union provides 

subsidies to farmers based on eligible land area (European Commission, 2013; EU 2013). 

The ‘Single Area Payment Scheme’ remains in force through 2020 to be replaced by a 

‘Basic Payment Scheme’ (EU, 2013). Curiously, the massive regulation provides no 

definition for hectares or how they are to be measured. In England, the name change has 

already occurred, tying payments to hectares of land and other conditions (RPA, 2015). 

Rural Payments Agency (RPA) mapping procedure appears to operate on the UK National 

Grid (a Transverse Mercator), although RPA will accept area measurements (including 

slope area) based on independent certified surveys (RPA, 2015, Annex 3, p. 49). Thus, 

England may have a patchwork with some areas on a projection plane and other areas from 

field survey. It is unlikely that fields on the margins of the Transverse Mercator will opt for 

field survey if the result is smaller than the inflationary distortion provided by the 

projection. Those in the center of the zone will have an incentive to pay for a survey. There 

would be a neat research project to verify if this incentive is strong enough to influence 

behavior. 



Harmel (2009, p. 29) reports on the case of France in the period of the single area 

payment. Here, the subsidies were based on area measurements calculated on the national 

coordinate system, a Lambert Conformal Conic. In the conversion to the revised national 

coordinate system (RGF 93), subsidies to the agriculture sector were reduced by 17 million 

euros. This reduction in payments was due to reduced scale error in the projection, 

particularly in the south of France and Corsica. Presumably, many other countries would 

have similar savings to make, but the magnitude is unreported and unexamined.  

Scale factors 

The largest impact of map projection comes from scale factor issues (for more treatment, 

see Chrisman and Girres, 2016). Projections distort by manipulating the scale of the Earth 

in various ways. 

The official coordinate systems adopted around the World favor angles and shapes 

over distance and area (Chrisman and Girres, 2016). The historical record links the 

adoption of these conformal projections to gunnery calculations during the Great War of 

1914-18 (O’Keefe, 1952). Both the old and new projections for France (cited by Harmel, 

2009) are Lambert Conformal Conics. When used as the base for GIS, the properties of 

perimeter and area are distorted with a known and avoidable error. In addition, tolerances 

and thresholds (as in buffers) are different from their intended ground distances (as in the 

North Korean missile cases). All these errors can be modelled by scale factors with a 

known and computable spatial distribution. These effects may not be very large when 

projection guidelines are carefully observed. However, they remain. The scale error on the 

standard projections of France were considered reasonable by the professionals who 

recommended adoption. Perhaps they did not consider how many public decisions might be 

based on that extended projection zone. The magnitude of that decision is around 17 

million euros for just one subsidy program. 

Berk and Ferlan (2017) confirm the magnitude of area distortions in their exhaustive 

study of all the parcels of Slovenia. The Transverse Mercator projection official coordinate 

system overestimates the western side of the country by 1.85 m2/ha and underestimates 

along the central meridian by 1.99 m2/ha. 

In a similar manner to the more common conformal case, an equivalent projection 

removes area distortion by manipulating the distortion of other properties. Unlike 

conformal projections, equal-area projections have different scales in different directions. 

Hence, it is much more complicated to correct distance and azimuth calculations on an 

equal-area projection. 

To my knowledge, no current GIS software provides a tool to generate a surface of 

distance scale errors or area scale errors based on projection parameters. Instead, properties 

calculated on the projection plane are presented as true measures despite solid evidence to 

the contrary. 

Straight lines 

Another issue concerns the concept of straight lines, a concept fundamental to geometry for 

thousands of years. The definition of a straight line is unambiguous in a planar context. In 

fact, the whole conceptual concentration on straight lines may come from the use of 

tabletop models of geometry (originally implemented in the sand, according to ancient 

practice). By unwritten computer-graphics convention, unless otherwise specified, the gap 



between two points is assumed to be ‘straight’. Cartographers have accepted the null 

hypothesis of straight lines without much debate (notably, Peucker, 1976). On the ellipsoid, 

the simplicity of ‘straight’ disappears (Deakin and others, 2011). 

To remind the reader, and to move in stages, consider spherical geometry as an 

intermediary. On the sphere, the shortest path between two points (P1, P2) is along a ‘great 

circle’ – the intersection of the sphere with a plane P defined by the two points plus the 

center of the Earth. All great circles have the same circumference and curvature (it is a 

sphere). Another neat property is that the perpendiculars at the two end points (a line 

toward the center of the Earth) are contained on the plane Q, and thus determines the 

shortest path in the field. Basic surveying uses a plumb bob to ‘level’ the instrument with 

respect to this local perpendicular.  

The ellipsoid brings some additional complexities. Sections through the ellipsoid 

are ellipses, though the Equator and other parallels of latitude remain circular (Deakin, 

2009). By definition, the distance to the center of the Earth varies from a maximum on the 

Equator to a minimum at the Poles. Polar flattening is around 23km, big enough to make a 

difference in surface distances and areas. Meridians remain easy to model, but other 

orientations of lines get more complex. At the points A and B (not at the same latitude), the 

two local perpendicular lines will not meet at the center of the Earth or at the same position 

on the polar axis (Deakin, 2009). Consequently, there are two ‘normal sections’ based on 

the two local perpendiculars; each is an ellipse on its distinct plane (PA, PB) (Figure 2). 

These two lines do not coincide, except in special cases like the Equator or meridians. 

These two normal sections are, neither one, the shortest path. The distance along the normal 

section ellipse can be estimated by integration, so it is not a shortcut to distance 

calculations. A third elliptical section – the ‘Great Elliptical Arc’ - can be obtained by 

including the center of the Earth and the two endpoints, in keeping with the procedure for 

Great Circles. It is not the shortest path, but it does trace the ground footprint of satellites 

(constrained to orbit the center of mass of the Planet). 

The shortest path is termed the ‘geodesic’. It traces the locus of normal to the 

surface, so it coincides with each normal section near their respective endpoints. In between 

the endpoints, the geodesic on the ellipsoid follows an S-shaped curve often contained 

between the two normal sections, but not necessarily (see Figure 2 for an exaggerated 

illustration). The length of the geodesic can be calculated, but it is certainly not ‘straight’ in 

the classical meaning of that term. It does not have a neat analytical form to aid in 

calculating intersections and other properties. 

 

Figure 2 – around here 

The distance between the two normal sections is not large, though it depends on 

latitude difference and location. In the case of the Black-Allan Line (on the border between 

Victoria and New South Wales, some 176 km long) the two normal sections are 0.03 m 

apart (Deakin and others, 2011, Figure 3, p. 13). Following either normal sections or the 

geodesic, ellipsoidal calculations are required to obtain the distance between two points. As 

distances increase, geodesics diverge up to a maximum (Equatorial dimension) then 

converge on the antipodal point. In the spherical case, the point on the opposite side of the 

sphere can be reached on any plane that passes through the axis between the two points. 

Thus, the whole sphere is on the ‘shortest’ path (the longest possible distance on the 

sphere). The ellipsoid is different, due to the flattening. In the equatorial case it is clear to 



see that an azimuth to either Pole will be shorter than around the wider Equator (Rapp, 

1993, p. 41). 

Geodesics on the ellipsoid also have a curious property as they continue on past 

their end point. While great circles close neatly back on the starting point, non-meridional 

geodesics on the ellipsoid wander off in a spiral (Rapp, 1993, p. 46). This infinite behavior 

is more similar to the infinite path of straight lines on the plane, though ellipsoidal 

geodesics intersect on each rotation. 

In the recent geodetic literature, Karney (2013, p. 44) defines straightness as a 

property on a projection (local azimuthal at every point). This brings us right back to the 

plane, even for the most basic definition of geodesics. To my knowledge, no GIS software 

bothers to consider the path of ellipsoidal geodesics. Even Hipparchus uses local spherical 

models with great circles. By some reports, certain database implementations use spherical 

great circles as well when data are referenced in angular coordinates. Straight lines on 

projections are applied in most cases despite clear evidence of distortions. The mistake of 

the North Korean missile map is not so unusual. 

Summary of problems (Table 1) 

 Geometric properties calculated by a GIS on planar projections will have 

errors that are predictable and preventable. 

 The current affordances of GIS software packages encourage laziness with 

respect to projection error.  

 Insufficient tools are provided to correct known errors.  

Simple remedies 

This section will set out some simple fixes that stay within the current structure of systems 

and current standards. A following section will consider more radical solutions. This 

treatment will review a variety of existing solutions, and provide citations to other sources 

for full mathematical treatment. Otherwise the mass of formulae would burden the text and 

diminish the breadth of the argument. 

The first and simplest solution is simply to warn users. Disclaimers and dense 

‘Terms of Use’ contracts pop up in our daily routine, enjoined by lawyers everywhere 

(Hunter and Goodchild, 1993, p. 59). At a minimum, GIS software should say something 

like ‘Estimates of distance and area are approximations calculated on a projection plane, 

and some adjustment may be required to derive more accurate values.’ But such a statement 

begs the question. It serves lawyers more than readers. If there is a known effect, why is it 

not treated? If you went to all the effort, don’t you want the real answer? These errors are 

not random or unpredictable; the effect is totally understood and programmable. 

A more aggressive stance could be copied from the data quality setting. Hunter and 

Reinke (2000) suggested a scheme to prohibit certain operations if the data quality is 

insufficient. It would be simple enough to prohibit the calculation of areas, for example, 

unless the projection was equivalent. Few software systems have implemented anything 

quite so complex. The current permissive approach requires other solutions. 



Correcting for known error  

The errors introduced by projections can be corrected. A local scale factor can be calculated 

point by point, and therefore corrected estimates can be produced. For distance measures, 

the length calculated on the projection plane can be adjusted, larger or smaller, depending 

on distance from the standard parallels or central meridian – depending on the specific 

projection used (Vincenty, 1985; Girres, 2011; 2012). Sampled at the points along a line, 

the variation in scale factor can be approximated if the sampling is relatively dense and 

uniform. Long segments aligned with a meridian or parallel might require a bit more 

treatment, but generally the result should be adequate with an estimate at either end.  

Adjustment of measurements according to scale error is commonplace in surveying 

(not just for the local error on the ellipsoid, but also raised up to ground level), yet 

somehow the practice (Grid to Ground) never penetrated GIS software. This deficiency 

may contribute to the distrust of GIS calculations in the surveying community. In the early 

period, GIS results could be defended as approximate, and fit for a different set of users. 

There is no reason now to continue this logic. Computing models should return the actual 

answer, not just what is easy to program. Using an inadequate model limits the tools to 

approximate data sources. Sadly, the knowledge of each discipline in the geospatial sector 

is not fully shared with the other participants. This lack may be due to different training 

pathways, but after forty years, ignorance is no excuse.  

For some operations dependent on distance, the parameters used in the calculation 

should be adjusted. For example, the width of a buffer should be modified to adjust for the 

local distortion of distances. This value would change across the data coverage, making 

some complexity, but it would resolve the projection scale issue. These adjustments will be 

small, and some will argue that the intent of a buffer is not so precise. However, it is not the 

programmer’s role to make that decision. GIS software should deliver what it advertises. 

Any treatment of uncertainty should not be compounded by adding uncertainties due to 

flaws in the numerical model. 

Adjusting area estimates 

Adjustment for errors in area are also possible, though more complicated. Taken at 

a point, like the distance factor, the error in area (for conformal projections) is 

approximately twice the distance error (Girres, 2012, p. 112; CERTU, 2010, p.4, see 

Equation 1). The squared term tends to be much smaller in typical applications. 

eA = 2 * eL + eL
2
    (1) 

where eL = linear error; eA= area error factor 

Unlike a distance calculation, area extends far away from the boundary points. 

Accumulating the average projection error around the perimeter leaves the vast inside of 

some polygons unsampled. Girres (2012) took the conservative approach of estimating the 

true area of a polygon by tessellating into a series of triangles on the ellipsoid and 

calculating the area using geodetic trigonometry. This approach moves past the adjustment 

of area to the topic of a subsequent section (abandoning projections altogether).  

Using projections intelligently 

Some of the difficulties cited above could be resolved by adopting different projections. 

The conformal properties of current official coordinate systems permitted simple hand 

calculations for surveying or artillery, but do not serve all the functions of a GIS. If the 



principal geometric concern is area (as in a crop estimation service or a forest inventory), 

then an equivalent (equal-area) projection may be the simplest solution (for example, 

Balcerzak and Pedzich, 2007). For many statistical purposes covering the conterminous 

United States, the most common projection is Alber’s Equal Area imported from 19th 

Century work in Germany (Snyder, 1987, p. 98). This projection (in its typical 

configuration for the 48 states) has differential linear scale error up to about 1% between 

the standard parallels, and a bit more at the northern and southern extremities. To make the 

area work out correctly, the scale along parallels compensates for the scale on meridians. 

Therefore, correcting for distance calculations on this projection is complicated. But, if the 

goal is areas, there is no need for correction. The main requirement is to insert sufficient 

points along ‘straight’ lines to ensure that they approximate the right geometry (Gillissen, 

1993). Most GIS avoid this step. 

The European Union has adopted a Lambert Azimuthal Equal Area (LAEA) 

projection to serve a similar role for coverage of the European member states (though not 

extending to overseas territories) (INSPIRE, 2010, p. 7).  Sadly, the INSPIRE working 

group adopted too many incompatible systems. They also allow the major two conformal 

mapping systems (Lambert Conformal Conic and Transverse Mercator), not surprising 

since these are the common choices for national official mapping. These conformal 

mapping projections require adjustments such as those described above.  

The INSPIRE working group also condone (in some manner) the use of the non-

projection called ‘Plate-Carée’ since it has come into use on (unnamed) internet viewing 

services. Planar calculations on this surface are wrong in every way imaginable, and bear 

no useful relationship to the Earth. In other words, even the power of 26 nation states 

cannot set a standard which opposes the economic power of an international corporation of 

global reach. This is particularly distressing when said corporation makes a selection 

without scientific merit. Yet, these sub-optimal choices become enshrined as standards, and 

we must work around them for decades to come. The First Mover effect is frighteningly 

powerful. 

For other procedures in a GIS beyond area calculation, a change in projection is not 

a full solution. For buffer calculations, the appropriate projection would be equidistant. The 

problem with this class of projections is that the equidistance property is only valid from 

one point. Thus, there is no single projection that will permit correct buffer calculations 

without considerable re-scaling of distances. As the North Korean missile case shows, 

buffers of geodetic proportions require careful treatment. 

Abandoning projections altogether 

While it is possible to counter each deficiency of map projections, the result becomes a 

patchwork. It is time to consider the more radical solution of abandoning projections for all 

calculations. I hasten to clarify that projections would remain important for display 

purposes. But if the need for specific kinds of calculations is removed, the choice of 

projection can be tailored to the requirements of visualization instead of calculation. 

This paper will consider four calculations that together provide adequate primitives 

for the computational geometry of GIS. In most of these cases, there will be variants to deal 

with the distinct kind of straight lines on an ellipsoid. The first two are simple distance and 

area, the classic measures considered in projection design. These two are not enough; 

fundamental GIS is also built on set theory queries implemented by map overlay 



procedures. These involve line intersection as the basic geometric step. Other operations 

calculate the distance from a line to construct buffers and similar objects. As announced 

previously, in an aim for brevity this article will not include the detailed formulae. They 

can be found in the sources cited. 

Distance on the ellipsoid 

Calculating the distance between two points on the ellipsoid is termed the ‘inverse’ 

problem (or the ‘Gauss inverse’). Perhaps due to the navigational connections or the 

terrestrial surveying background, the ‘direct’ problem determines the end-point of a 

geodesic given an initial azimuth and a distance from a starting point. Both problems have 

been treated by geodesists for over two hundred years (for example, Clairaut, 1743; Bessel, 

1825; Gauss, 1828; Helmert, 1884; Rapp 1993). This distance typically follows the shortest 

path, the geodesic. Distances along other lines, such as normal sections, can also be 

computed. 

In recent years, many programmers have used Vincenty’s (1975a) iterative solution, 

derived from Rainsford (1955). This requires at least six trigonometric function calls per 

iteration; convergence takes two to four iterations (Vincenty, 1975a, p. 93) except in 

antipodal cases. As the author admitted (Vincenty, 1975a, p. 92), the solution is not 

accurate for nearly antipodal points, but it provides a decent solution (less than 1 mm) in 

more common cases (Vincenty, 1975a, p. 90). Vincenty (1975b) worked out some solutions 

for antipodal points, but did not publish the paper. Rapp (1993) and others have resolved 

most of the numerical issues to deliver stable solutions. 

Karney (2011) has developed numerical procedures that expand the series a few 

more terms, and reduce the calculations by careful grouping of terms that can be 

precalculated. Karney increased the accuracy to 15 nanometers, and eliminated the 

convergence problems (Karney, 2011, p. 52). On a computer of the current era, Karney 

(2013, p. 53) reports 2.3 s on average for the inverse problem, versus 1.3 s for 

Vincenty’s algorithm on the same configuration. Just for reference, on the computer used 

by Vincenty in his tests (an IBM 7094 - already obsolete in 1975), the memory cycle (time 

to retrieve one element) was 2.2 s. In other words, one simple memory reference took as 

long as it now takes to estimate distance to the nearest micrometer. For the purposes of a 

GIS operating on ellipsoidal geometry, the calculation of distances is no longer a barrier. 

Area on the ellipsoid 

Area calculation on the ellipsoid is more complicated, as Lukatela (2000) has explained. 

The well-established planar approach slices a polygon into trapezoids (with parallel rays 

heading off to one axis or another). On the ellipsoid, latitude and longitude can be treated as 

pseudo-orthogonal axes creating pseudo-trapezoids to the Equator. However, the geodesic 

(diagonal) boundary of this trapezoid is not a straight line, so the area between the geodesic 

and the Equator has to be approximated by integration (Danielsen, 1989; Sjoberg, 2006). 

Kimerling (1984) derived the areas of pseudo-trapezoids through approximations calculated 

on the UTM projection. This strategy defeats the purpose to calculate directly on the 

ellipsoid.  

In the geodesy literature, a few publications provide a direct solution following two 

distinct strategies. The first, more traditional, approach works on an ‘authalic sphere’ with 



corrections for the ellipsoid. Danielsen (1989) draws an ellipsoidal pseudo-trapezoid 

formed by the boundary line in question, the equator, and the two meridians connecting to 

the end points of the line. All four lines are geodesics on the ellipsoid. Danielsen maps 

them onto a sphere (the reduced latitude) iteratively to preserve the azimuth. The area is 

accumulated on the appropriate radius. He provides the basic formulae to calculate to 1m2 

(third order terms in the iterative procedure). Working directly on the ellipsoid, Sjoberg 

(2006) improves on these results. Karney (2013, p. 50) worked out the terms to higher order 

and recast them as trigonometric sums. As is often the case, the estimation of these terms 

can be unstable when distances are short- very much the case of most GIS applications. 

Karney mobilizes the work of Bessel (1825) to limit this issue. This technique involves 

integration where each term invokes four trigonometric functions and some multiplications 

and divisions in a traditional series expansion. The computation will cost more than the 

planar case, for certain.  

Lukatela (2000) follows another strategy, based on a tessellation of the ellipsoid 

into Voronoi-like cells, each of which is a spherical facet with a locally adjusted radius. 

This is the Hipparchus model (Lukatela 1987). In this model, each cell is a composite of 

spherical triangles – bounded by great circles, whose area is easily derived. Unlike the other 

more mathematically oriented publications, Lukatela (2000, p. 125) provides a full-scale 

test of his calculation algorithm. The area of his 2432 Voronoi cells falls short of the 

expected total for the Earth by 45 km2 or one part in 1.1x107. When applied to the Digital 

Chart of the World data for land and ocean, the algorithm evaluated 1.3x106 triangles. The 

sum of land+ocean fell short by 4160 km2, about 100 times larger than the discrepancy with 

the smaller set of objects. Inevitably, there is some loss to roundoff, but the same applies to 

area estimates performed on the plane. There are few studies with equal rigor published for 

other techniques. At 1 part in 1.2x105, Hipparchus is clearly superior to the accuracy in area 

for any areas calculated on conformal projections. In normal zones, linear scale factors 

range up to 1 part in 4x103, so area scale factors can be of the order of 1 in 8x103. 

In the Hipparchus model, the spherical calculations for area used the local radius of 

the ellipsoid (following the algorithm of Legendre, 1806). The Hipparchus system 

promoted by Lukatela (1987) tessellates the ellipsoid into spherical Voronoi-like cells.  

Using either the method of Karney or Lukatela, areas can be estimated on the 

ellipsoid. All area measurements, either performed on an equal-area projection or on the 

ellipsoid, can suffer from numerical issues dealing with thin objects. There may be rather 

limited attention to this kind of roundoff accumulation in GIS. Adding many small items to 

a big accumulation loses digits (Kahan, 1965; Higham, 1993). The well-established 

techniques to counter round-off losses are rarely deployed in practical software. Still, this 

kind of issue is of much lower concern than the scale factor issues on conformal projections 

(by a factor of 100, perhaps).   

Line intersection and distance to a line on the ellipsoid 

Beyond distance and area, GIS depends on additional geometric procedures. One of the 

most notable in the history of GIS was polygon overlay. This capability provided the basis 

to merge attributes attached to distinct geometric figures, and to implement topological 

queries. At the base, this depends on the ability to calculate the intersection of linework. 

Once established, an overlay engine does a number of additional procedures, from point in 

polygon to topological cleaning. It is thus fundamental to operational GIS. 



The basic geometric operation to calculate intersection on the plane begins with 

calculating the distance from a point to a straight line (Little and Peucker, 1979). Two 

opposing signs on the oriented distance provide a better test for intersections than many of 

the other solutions (Dougenik, personal communication, 1978). Even on the plane, the 

intersection problem is non-trivial. Douglas (1974) had a famous rant titled ‘It makes me so 

CROSS’, citing all the special checks required for coincident points, near parallel cases, 

and numerical effects of roundoff. Saalfeld (1987) countered with ‘It doesn’t make me 

nearly as CROSS’, citing better choices for representing lines. This background prepares 

for further complication on the ellipsoid where, as discussed previously, lines are not as 

well-behaved. 

Karney (2013, p. 54) includes the intersection problem in his set of geodesic 

calculations, linked to what he calls the interception problem – the calculation of the point 

on a line closest to a point off the line. This is an alternate way of formulating the distance 

from a point to a line. For the ellipsoid, Karney suggests an iterative procedure using an 

ellipsoidal gnomonic projection. The spherical gnomonic projection preserves great circles 

as straight lines. On the ellipsoid, it is not as exact. Karney’s projection provides a solution 

where intersections within 1000 km of the center are within 1.7m of true position anywhere 

along a geodesic (Karney, 2013, p.54). Karney is not satisfied with that level of error, so he 

iterates the intersection procedure with the calculated intersection as the new center of the 

projection, until convergence is reached. Since the epsilon tolerance associated with many 

polygon overlay procedures is on the order of a meter, the use of a single gnomonic for a 

region might be enough. The main point is that Karney does not provide a procedure to 

calculate the intersection of two geodesics directly on the ellipsoid. The reason is that 

points along a general geodesic do not hold to a specific equation, as do points on a planar 

line. It makes the analytical geometry quite difficult. 

Once the interception problem is solved on the gnomonic projection, the best 

practice would be to calculate the distance using the ellipsoidal procedure provided by 

Karney. Distances on the gnomonic projection are notoriously distorted, even quite close to 

the origin. Alternatively, distance on the gnomonic can be adjusted by these known scale 

factors.  

Discussion 

Initially I expected to reject planar geometry for GIS, and to reconstruct computational 

geometry on the ellipsoid. The errors of projection use seemed too pervasive and complex.  

There are good solutions for precise calculation of distance on the ellipsoid. In some 

user interfaces, the distance calculation allows ad hoc query of ellipsoidal distances, 

although the database still contains perimeter and distance measures calculated in the 

projection in which the coordinates are stored. The alternative requires some estimation of 

scale factors on each projection surface which are a bit messy but not out of the question. 

For area, the reverse seems to be the case. The calculation on the ellipsoid is possible, but 

tricky. Calculating area on an equivalent projection gives a precise answer with no need for 

re-engineering. Berk and Ferlan (2017) confirm this result in an exhaustive study of all 

parcels in Slovenia. They also demonstrate that the choice of projection parameters does 

matter. 



The final case of line intersection does not seem feasible on the ellipsoid. Even the 

most die-hard geodesist suggests that we use a particular projection (though not a typical 

projection). 

On balance, the case for direct calculation on the ellipsoid is not as strong as I 

expected. Rather than rejecting projections, I conclude by recommending the use of 

different projections tailored for each specific problem. 

Technical conclusion 

GIS professionals must learn to apply the appropriate projection for each kind of 

calculation, following the advice of Tobler (1993). Blanket adoption of official (conformal) 

coordinate systems leads to incorrect results, as documented above. The following 

guidelines move from the easier cases to the harder ones. Regular users can immediately 

adopt the easier ones, while Recommendation 3 requires change in the software sector. 

Recommendation 1: Area 

The area column in spatial databases should only be calculated on an equivalent projection. 

There are many to choose from, if appropriately designed for the study area. As Usery and 

others (2003) document, choice of projection parameters do matter. Berk and Ferlan (2017) 

confirm this result by obtaining much better performance from an Alber’s Equal Area 

Conic than the Lambert (LAEA) often suggested by European agencies. A user can simply 

specify a current display projection, then calculate the areas into a new column. 

Recommendation 2: Distance 

For measures of length (perimeter), the correct result can be obtained rather easily from a 

proper ellipsoidal calculation (for example, Vincenty, 1975; Karney  2013). This provides a 

distance on the ellipsoid undistorted by the projection. Alternatively, a projection scale 

factor can be estimated based on the end points. For a conformal projection, these 

correction factors are a simple function of distance from the central meridian of a cylindric 

projection such as UTM, or the standard parallels of a conic. A surface of these values 

could be constructed using a raster map calculator. Producing this surface should be an 

automatic function of any advanced software package (though currently unavailable to my 

knowledge). As Girres (2012) points out, using a grid of correction values would also 

permit adjustment of the distances to actual ground values, taking elevation and slope 

distance into proper account with a digital elevation model. The ground distance model 

may deliver a more useful answer than a distance derived on the projection plane or the 

ellipsoid. 

Recommendation 3: Intersections and buffer distance 

Given that most polygon overlay is calculated with a fuzzy tolerance, it may seem to be too 

much effort to use the iterative procedure of Karney. Perhaps just using an ellipsoidal 

gnomonic projection centered on the study area will be adequate for regions up to 1000 km. 

This projection will have the side effect of grossly distorting the area measurements often 

included in the process. Until software developers recognize the issue, it may be necessary 

to continue with the current solutions based on planar calculations on conformal 

projections.  



Ethical conclusion 

Ultimately, the argument is not about the nuance of high order terms in some geodetic 

equation or about the correct estimation procedure. Professionals practicing in the realm of 

geographic representation must deal with the Earth as it is – round. Ellipsoidal models 

provide the correct answer to many spatial queries, and the surrogate answers calculated on 

some other object must be properly adjusted. 

The current solutions produced by the default planar algorithms produce 

systematically biased results. Since these factors are totally predictable, a professional must 

adjust for them.  

Ignorance is no excuse. 
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Captions: 

Figure 1. North Korean missile range, depicted on Wikimedia Commons using an 

orthographic projection. Produced by ‘Cmglee’ (2013). Creative-commons Attribution-

Share Alike 3.0 license. 

Figure 2: Geodesic from A to B (in red dashed line) between two normal sections. 

The plane PA including the normal at A is shown in grey. Note: to render the lines 

distinguishable, the ellipsoid has been dramatically flattened. Source: Modified from Deakin, 

2009; with kind permission of the author. 

 


