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The location swapping method for geomasking
Su Zhang, Scott M. Freundschuh, Kate Lenzer and Paul A. Zandbergen

Department of Geography and Environmental Studies, The University of New Mexico, Albuquerque, NM, USA

ABSTRACT
When locations of individual-level health data are released in the form of published maps, the
identity of these individuals could be identified through reverse geocoding. Spatial data can,
therefore, not be released unless the locations have been modified, for example, using aggrega-
tion or geographic masking. Geographic masking techniques apply translation or perturbations
to decrease the likelihood of re-identification of individuals through reverse geocoding. The
current study proposes a new geographic masking technique referred to as “location swapping.”
Location swapping replaces an original location with a masked location selected from all possible
locations with similar geographic characteristics within a specified neighborhood. Strengths and
weaknesses of location swapping will be discussed relative to existing geographic masking
techniques. The approach will be illustrated using several example data sets and a custom toolset
developed for ArcGIS to automate the location swapping algorithm.
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Introduction

Data sets that contain the locations of patients and
their associated illness are important for medical
research. Through analysis of patient locations, loca-
lized disease clusters can be detected, their causes
investigated, and public health improved (Wieland
et al. 2008). Although these spatial data sets can facil-
itate epidemiological research, they must be used in a
manner that protects patients’ privacy. Geographic
masking (geomasking) has emerged as a primary tech-
nique for preserving privacy.

Geomasking changes or displaces the geographic
location of an individual in an unpredictable way to
protect confidentiality, while preserving the relation-
ship between locations and occurrence of phenomena
such as disease occurrence (Wiggins 2002; Sherman
and Fetters 2007). Of interest to us are geomasking
methods that provide “privacy protection for indivi-
dual address information while maintaining spatial
pattern/resolution for mapping purposes” (Allshouse
et al. 2010). In spite of these geomasking techniques,
it is still possible for users of geomasked data to deter-
mine original addresses using reverse geocoding tech-
niques. The original patient address can then be
associated with one or several individuals using pub-
licly available directories (Brownstein et al. 2006;
Curtis, Mills, and Leitner 2006; Kounadi et al. 2013;
Zandbergen 2009).

Re-identification of individual addresses using
reverse geocoding has been shown to be relatively
easy (Brownstein et al. 2006; Curtis, Mills, and
Leitner 2006). The current trend toward spatial data
of higher resolution and the availability of free online
reverse geocoding tools further increases the disclosure
risk (Zandbergen 2009). For example, both Google
Maps and Microsoft’s Virtual Earth added rooftop-
level geocoding and reverse geocoding to their free
online mapping services in 2008, making highly accu-
rate and relatively sophisticated “map-hacking” tools
available to anybody with an Internet connection and
modest computer skills. Map-hacking tools enable a
user of geospatial data to see a greater level of detail
in the data than was intended by the creator of that
data.

This study developed a new geomasking technique
referred to as location swapping. Using real-world
residential data sets, we addressed limitations of exist-
ing techniques and compared the results of location
swapping to several existing geographic masking tech-
niques in terms of degree of privacy protection and
spatial pattern preservation (e.g., clustered or dis-
persed). We used the spatial k-anonymity metric to
assess the probability of identity re-discoverability.
This metric enables the development of masking tech-
niques that provide a specified minimum degree of
privacy protection while maximizing the utility of the
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masked data set for spatial pattern analysis. Using
land cover data and road network data, we also
explore how consideration for the geography of an
area in the geomasking process can enhance the pre-
servation of spatial distributions/clusters of initial
point locations. Two spatial statistics, including aver-
age nearest neighbor and Ripley’s K function, were
used to investigate location swapping’s spatial pattern
preservation capabilities. A custom toolset was devel-
oped in ArcGIS and used to automate the location
swapping algorithm.

Geolocation privacy

With the passing of the Health Insurance Portability
and Accountability Act of 1996 (HIPAA), patient priv-
acy has been under federal protection. HIPAA specifies
that two criteria must be satisfied in order to dissemi-
nate patient location information as a nonidentifiable
data set. First, any of 18 specific identifiers (e.g., name,
address, zip codes) cannot be included in the publish-
able data set. (See http://www.hhs.gov/ocr/privacy/
hipaa/understanding/coveredentities/De-identification/
guidance.html#zip for a listing of all 18 identifiers.)
The second criterion specifies that a qualified data set
could be disseminated if there is a “very small risk” that
one can use the information to identify a person. Note
that HIPPA regulations do not specify what is meant
by a very small risk:

There is no explicit numerical level of identification
risk that is deemed universally to meet the “very small”
level indicated by [a de-identification] method. The
ability of a recipient of information to identify an
individual (i.e., subject of the information) is depen-
dent on many factors, which an expert will need to
take into account while assessing the risk from a data
set. This is because the risk of identification that has
been determined for one particular data set in the
context of a specific environment may not be appro-
priate for the same data set in a different environment
or a different data set in the same environment. As a
result, an expert will define an acceptable “very small”
risk based on the ability of an anticipated recipient to
identify an individual. (U.S. Department of Health and
Human Services, 2015)

For geomasking, risk has to be determined based on
the ability of a technique to best maintain privacy. The
challenge of balancing the need for individual privacy
with the potential benefits of providing researchers
access to georeferenced individual-level data has been
widely recognized (Carr et al. 2014; Nissenbaum 2010).
In the National Research Council (2007) report Putting
People on the Map: Protecting Confidentiality with
Linked Social-Spatial Data, the NRC states:

Recent research on technical approaches for reducing
the risk of identification and breach of confidentiality
has demonstrated promise for future success. At this
time, however, no known technical strategy or combi-
nation of technical strategies for managing linked spa-
tial-social data adequately resolves conflicts among the
objectives of data linkage, open access, data quality,
and confidentiality protection across datasets and data
uses. (p. 2)

Since the identity of individual patients can be identi-
fied through reverse geocoding, spatial data sets cannot
be released unless patient locations have been modi-
fied. The prevalent method for protecting patient priv-
acy has been aggregation of data by regions that are
larger than the zip code level, such as census districts
or counties. Although the data aggregation method can
preserve privacy, the substantial loss of high-resolution
spatial information hinders disease mapping and clus-
ter detection. Olson, Grannis, and Mandl (2006) assert
that the detection of spatial clusters is significantly less
sensitive and specific when data are aggregated even by
zip code. According to Boulos, Curtis, and AbdelMalik
(2009), a higher level of data aggregation results in less
effective analysis for identifying geographic and epide-
miological trends at the local level. In addition, Cassa
et al. (2006) found that the most efficient use of public
health resources should be accomplished through a
disease map with the highest possible spatial resolution.
However, higher spatial resolution of the data results in
easier identification of individuals.

Geographic masking (geomasking)

Geomasking techniques have been the subject of pre-
vious research of which several dominant techniques
have emerged that includes random perturbation
within a circle and donut masking. The random pertur-
bation within a circle method begins by creating a
buffer with a specified radius around the location to
be masked. A displacement location is then randomly
assigned within this buffer zone to be the masked
location. Because every point within the buffer is
equally likely to be selected as the masked location,
masked locations are more likely to be displaced
further from the original location. The radius for creat-
ing the buffer can be varied based on local population
density. (See Armstrong et al. 1999; Cassa et al. 2006;
and Kwan, Casas, and Schmitz 2004 for a complete
explanation of this method.)

Donut masking is similar to random displacement
within a circle, but in this method a smaller internal
buffer is created inside the larger buffer, creating the
“donut,” and the displaced location is placed outside of
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this smaller buffer but inside the larger buffer. In effect,
this technique sets minimum and maximum levels of
distance for location displacement. The radius of the
smaller buffer is set as a proportion of the radius for
the larger buffer. Though existing research (Hampton
et al. 2010) on this method suggests that the distance
values for the buffer radii could be based on population
density, there has been little in the way of empirical
validation of buffer radii in relation to population
density.

Past research has focused primarily on developing
conceptual models for different masking techniques
(Armstrong et al., 1999; Gutman et al. 2008; VanWey
et al. 2005) and determining whether or not the
masked data preserve the same general spatial pattern
as the original data to allow for spatial analysis and
representation (e.g., Kwan, Casas, and Schmitz 2004;
Olson, Grannis, and Mandl 2006). More recently, a few
studies have emerged that examine geographic masking
using an empirical approach to disclosure risk (Cassa
et al. 2006; Leitner and Curtis 2006; Wieland et al.
2008).

Despite this past research, there is at present limited
confidence in the ability of geographic masking tech-
niques to reliably protect individual privacy, while at
the same time still providing masked data sets that are
spatially representative of the original data set for the
purpose of spatial pattern analysis. Most research on
geomasking has essentially postulated that a “substan-
tial” displacement of the original point location would
suffice to preserve geospatial privacy (Kwan, Casas, and
Schmitz 2004; Leitner and Curtis 2006; Stinchcomb
2004). Determining the nature or magnitude of displa-
cement required to effectively accomplish this has not
been addressed, with some notable exceptions (Cassa
et al. 2006; Wieland et al. 2008).

The location swapping technique

Location swapping is a relatively simple concept in
which the location to be masked is traded or “swapped”
with a new location that is selected from all possible
locations with similar geographic characteristics within
a specified neighborhood. The two techniques devel-
oped in this study, location swapping and location-
swapping-with-donut, hold promise for achieving a
higher degree of identity protection while minimizing
the amount of displacement and maximizing spatial
pattern preservation.

The location swapping method begins by first gen-
erating a buffer with a defined radius around the
location to be displaced. A displacement location is
then randomly selected among the locations that fall

within the buffer. The location to be displaced is
transferred to the displacement location. There are
a number of similarities between location swapping
and random-perturbation-within-a-circle, including
(1) all possible displacement locations are equally
likely, (2) that masked locations are more likely to
be positioned further rather than closer to the loca-
tion of the displaced location, and (3) the radius for
the buffer can be varied based on population density.
In spite of these similarities, there two important
differences between location swapping and random-
perturbation-within-a-circle. First, only existing resi-
dential address locations are considered as possible
displaced locations in location swapping rather than
the universe of all points within a buffer. For this
study, all of the possible residential locations used in
location swapping were derived from housing-unit-
level data (i.e., address points). Second, the radii for
location swapping are varied based upon local popu-
lation density, not on all possible swapping locations
(i.e., number of residential addresses). The concept
of location swapping technique is illustrated in
Figure 1.

Location-swapping-with-donut employs the same
methods as location swapping, but like donut masking
a smaller internal buffer within which points cannot be
displaced is utilized. Also similar to donut masking, the
minimum and maximum levels of distance for displa-
cement are set. In location swapping with donut, the
radius of the smaller internal buffer is selected as a
proportion of the radius of the external buffer. The
radius for creating the buffer can also be varied based
on local population density. For our analysis, we used
an internal buffer ½ the radius of the external buffer.
This method is illustrated in Figure 2.

Theoretically, both location swapping and random-
perturbation-within-a-circle move a location to a new
one inside a circle with a specified radius centered at
the original location. It is obvious that the masked
locations must lie within the circle. However, location
swapping technique is a more realistic geomasking
technique in terms of the displacement location that
is selected for masking. For example, if part of a buffer/
circle intersects a body of water or other uninhabited
region, then masked locations will not be placed there
since no residential addresses exist at those locations.
In contrast, for random-perturbation-within-a-circle
technique, it is possible to place the masked locations
in these uninhabitable areas since every location within
the circle is equally likely. Another characteristic of
location swapping is that it renders results that are
more geographically representative because the masked
locations are selected from a finite number of
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residential addresses. This results in a greater potential
for preservation of spatial patterns for analysis.

Methodology

The metric–spatial k-anonymity analysis

For each of the four masking techniques of random-
perturbation-within-a-circle, donut masking, location
swapping, and location-swapping-with-donut, we used
reverse geocoding methods to determine the “probabil-
ity of discovery” for each technique. In order to eval-
uate and compare the degree to which each geographic
masking technique protected against identification of
an individual, we used the spatial k-anonymity metric.
This metric is an extension of k-anonymity, which has
received substantial attention in the literature for its
application to tabular data (Sweeney 2002a, 2002b; El

Eman and Dankar, 2008). Spatial k-anonymity exploits
the concept of k-anonymity in order to protect the
identify of users. The main idea of spatial k-anonymity
is to replace the exact location of user U with an
anonymizing spatial region that contains at least K-1
other users, so that a hacker can pinpoint user U with
probability at most 1/K (Ghinita et al. 2009). Given the
nature of geographic masking, any type or amount of
displacement or perturbation of the original locations
can result in a masked location being in close proxi-
mity to the “true” location. However, the actual dis-
tance is not as important as the probability of
discovery, which is more effectively characterized with
an analysis based on spatial k-anonymity. If a location
is displaced a substantial distance but the spatial
k-anonymity value is very low, the probability of

Figure 2. Example of location swapping with a donut techni-
que. (a) Red dot represents the original location to be dis-
placed; (b) two buffers are placed around this point, the smaller
½ the radius of the larger, creating the donut; (c) all possible
swap locations in the donut are identified (i.e., residential
locations that fall within the buffer); (d) the location (red dot)
to be displaced is removed; (e) a swap location (purple dot) is
randomly selected from all possible swap locations; and (f) the
original location is displaced to the swap location.

Figure 1. Example of location swapping technique. (a) Red dot
represents the original location to be displaced; (b) a buffer is
placed around this point; (c) all possible swap locations in the
buffer are identified (i.e., residential locations that fall within
the buffer); (d) the location (red dot) to be displaced is
removed; (e) a swap location (purple dot) is randomly selected
from all possible swap locations; and (f) the original location is
displaced to the swap location.
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discovery is high. A standard for geospatial privacy
protection should be based on achieving a high level
of spatial k-anonymity. Our analysis determined which
geographic masking techniques provide the highest
level of geospatial privacy protection (i.e., the highest
values of k-anonymity) and which masking parameters
provide a minimum level of k-anonymity across a
range of population densities.

Data collection

For this study, three US counties were selected for the
analysis including Jackson County in Oregon, Travis
County in Texas, and Wake County in North Carolina.
These three counties were selected for geographic
representation as well as for the varying range of
urban/rural population densities. High-resolution
address points in these three counties for 2010 were
obtained from each county’s GIS Data Clearinghouse.
Table 1 provides a brief summary of the address points
of these three counties.

We were interested in investigating how the consid-
eration of geography might result in the preservation
or not of resulting spatial patterns of masked data.
Therefore, land cover data were obtained from the

2006 National Land Cover Dataset (NLCD) for all
three counties. These data are nationwide and of a
30 m spatial resolution. Figure 3 shows an example of
the 2006 NLCD land cover data for Travis, Texas. The
land cover data for Jackson County were projected in
NAD_1983_UTM_Zone_10N, Travis County in
NAD_1983_UTM_Zone_14N, and Wake County in
NAD_1983_UTM_Zone_17N.

The road network data for Jackson County were
obtained from Jackson County GIS (www.smartmap.
org/portal/home.aspx), projected in NAD_1983_UTM_
Zone_10N. The road network data for Travis County
were obtained from the Center for Geospatial
Technology in the Texas Tech University (www.gis.ttu.
edu/center/), projected in NAD_1983_UTM_Zone_14N.
The road network data for Wake County were obtained
fromWake County GISMapping Service (www.wakegov.
com/gis/default.htm), projected in NAD_1983_UTM_
Zone_17N.

Procedure

For each of the four masking techniques, a range of
values for masking (displacement) distance and for
population density was used. Research by Hampton
et al. (2010) demonstrated that effective masking tech-
niques had a negative, linear relationship between dis-
placement distance, density and k-values. We assumed
for our study, then, that a larger radius was needed for
low-density population areas so as to include more
potential residential locations to reduce the probability
of re-identification. Based on the results of Hampton
et al. (2010), we selected maximum buffer distances of

Table 1. Address points for the three study counties.

County State
Total number of
address points

Number of sampled address
points used for analysis

Jackson Oregon 76,126 640
Travis Texas 247,026 1407
Wake North

Carolina
264,036 1465

Figure 3. 2006 Land cover data for Travis, TX. Data were obtained from the National Land Cover Database (NLCD).
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200, 300, and 800 m applied to low-, medium-, and
high-density areas respectively to test our model. Each
county’s population density categories of high, med-
ium, and low were derived from tract-level census data.
Tracts with a population density of <250 people per
km2 were categorized as low-density areas. Tracts with
population densities between 250 and 1000 and >1000
people per km2 were categorized as medium- and high-
density areas, respectively. This allowed for low-, med-
ium-, and high-density areas to be represented in each
of the three study counties.

After the density categories were identified, residen-
tial address points were sampled from each density
category. To perform this sampling, one address point
was randomly chosen from each category of population
density to serve as the center of an artificial cluster.
Buffers were then created around these chosen center
points at distances of 1 and 5 km. Sample residential
address points were then randomly chosen from the
universe of address points within the three regions
created by the buffer zones (see Figure 4). A 3% sample
of residential address points within the 1 km buffer, a
1.5% sample of the residential address points between
the 1 and 5 km buffers, and a 0.5% sample of residen-
tial addresses outside the 5 km buffer were randomly
drawn. The percentages used for sampling were chosen
so as to maintain detectable clusters. All three study
areas were sampled at the 3%, 1.5%, and 0.5% level.

We then calculated k-anonymity values. First, the
position to be masked was randomly selected, followed
by the random selection of a swap location. Then the
swap distance, that is, the distance between the point to
be masked and the swapped (new) location was calcu-
lated. A buffer was then created around the swapped
point location, the buffer size equal to the swapping
distance. All residential locations that were in the buf-
fer were enumerated; this count comprising the

k-anonymity value. This procedure is illustrated in
Figure 5. The masked locations that resulted from the
application of geomasking methods were then con-
verted to an nth nearest-neighbor number, which was
the number of residential locations that were in closer
proximity to the masked location than to the original
location. Conceptually this is similar to using local
population density, but it employed the empirically
observed distribution of actual residential locations
instead of an estimate of average population density.

For these three study counties, the k-anonymity
value was calculated for each of the masking

Figure 4. Sampling of residential address points in Travis County, TX. (a) All residential address points; (b) 1 km buffer (dark red)
illustrating area of 3% sample of residential address points in high density areas; 5 km buffer (orange) illustrating area of 1.5%
sample of residential address points in medium-density areas; remaining areas (yellow) illustrating area of 0.5% sample of address
points in low-density areas; and (c) resultant sample of address points used for analysis.

Figure 5. Example determining spatial k. (a) Red dot represents
the original location to be displaced, and the purple dot
represents the residential location for the displaced (masked)
location; (b) a buffer of distance d is placed around the masked
location; (c) green dots represent residential locations; and (d)
the count of residential locations within the buffer is the value
of spatial k.
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techniques. Then a cumulative distribution function
(CDF) was calculated for each of the masking techni-
ques. CDF, which can provide a quick summary of the
spatial k-anonymity relationship, is a function that
maps spatial k-anonymity values into their percentile
rank in a distribution. When creating CDF, each loca-
tion was considered to have equal percentage and then
sorted by smallest k-anonymity value to the largest
k-anonymity value.

Considering geography in geomasking

Land cover
For each county, the unmasked and masked address
points were assigned a land cover category using a
point-in-raster overlay with the 2006 NLCD data. We
used a generalized land cover classification wherein the
NLCD data were classified into urban (high density,
medium density, low density, and open space developed
categories) and nonurban (all nonurban categories). For
each county, the results for the two sets of point locations
(original and masked locations) were compared using an
error matrix and associated measures of agreement.
Figure 6 illustrates the idea of the land cover analysis.

Road proximity
Road proximity analysis was utilized to examine
whether a masked location had a similar proximity to
roads as the unmasked location. Ideally, a good geo-
graphic masking method should not only provide a
high level of identify protection and land cover type
preservation, but should also preserve the proximity to
roads. For example, it is less desirable to place a
masked location in a position with a distance of 50 m
to the nearest road while the original location has a
distance of 10 m to the nearest road. Road proximity
analysis was achieved through the use of a point-and-
polyline overlay, specifically, through measuring the
distance from address points to road networks. Files
containing up-to-date road networks were obtained
from each county’s GIS data download site.

For each county, the distance between original point
locations and their corresponding nearest road was
calculated. The distance between masked locations
and their corresponding nearest road was then calcu-
lated for each of the geographic masking techniques.
The CDF was then developed for each of the masking
techniques to assess how well the resulting masked
locations approximate the road proximities of the
unmasked residential addresses. When creating CDF,
each location was considered to have equal percentage
and then sorted by the shortest distance to the longest

distance. Figure 7 illustrates the concept of the road
proximity analysis.

Considering spatial pattern preservation in
geomasking
To evaluate location swapping and location-swapping-
with-donut methods’ spatial pattern preservation cap-
abilities, average nearest neighbor and Ripley’s K func-
tions were used. The average nearest neighbor
measures the distance between each feature’s centroid
and its nearest neighbor’s centroid location to deter-
mine if the feature class is clustered or not. Ripley’s K
function, also known as multidistance spatial cluster
analysis, determines whether features exhibit statisti-
cally significant clustering or dispersion over a range
of distances.

Results and discussion

The performance of each of the four geographic mask-
ing techniques in the three study counties is summar-
ized in Table 2. The CDF shown in Table 2 maps
spatial k-anonymity values to their percentile rank in
a distribution. Three spatial k-anonymity threshold

Figure 6. The illustration of land cover association analysis. The
land cover types of the (a) original locations and (b) masked
locations are compared to examine the effectiveness of geo-
graphic masking techniques on the land cover agreement of
residential addresses.
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values of 20, 50, and 100 were selected for evaluating
the performance of each geomasking technique. Note
the spatial k-anonymity can also be interpreted as nth
nearest-neighbor number. Therefore, the meaning of
k-20 is that there are at least 20 nearest neighbors for
the masked location. For example, k-20 for Jackson
County in Table 2 has a CDF value for random per-
turbation of 24% and 18% for location swapping. What
this means is that for random perturbation 23% of the

masked points have k values <20, 24% have a k value of
20, and 75% have k values >20. In comparison, for
location swapping 17% of the masked locations have
a k value <20, 18% have k values of 20, and 81% have k
values >20. A smaller CDF results in a greater percen-
tage of masked points having higher k values, and
therefore, a more effective masking technique.

In addition, the higher the threshold spatial k-anon-
ymity values, the lower the probability of re-identifying a
location. Using the k-100 value for Jackson County in
Table 2 as an example, the CDF value for random per-
turbation is 73% and 67% for location swapping. This
indicates that 26% of the masked points have k values
>100 for random perturbation while 32% of the masked
locations have k values >100 for location swapping. From
Table 2, the location-swapping-with-donut also provides
greater anonymity than the donut masking.

One explanation why location swapping and location-
swapping-with-donut are more effective is that these two
techniques are more representative as to where the
swapped point is displaced geographically. For the ran-
dom-perturbation-within-a-circle and the donut masking
method, the masked location is placed randomly, which
means that the displacement can be shifted to a location
that is far from any existing residential location.
Therefore, the spatial k-anonymity values tend to be com-
paratively low. However, for the location swapping and
location-swapping-with-donut technique, the displace-
ment must be in one of the existing residential locations.

Land cover association analysis examined the effec-
tiveness of geographic masking techniques on the land
cover agreement of residential addresses before and
after displacement. We employed a generalized
urban-rural land cover classification of the NLCD
land cover data, where all urban land cover types
were collapsed into one urban class and nonurban
land cover types were collapsed into one nonurban
class. Table 3 illustrates the percent of classification

Table 2. Summary of spatial k-anonymity analysis for each
county.
County Masking technique k-20 k-50 k-100

Jackson Random perturbation 24 45 73
Location swapping 18 42 67
Donut masking 10 32 63
Location-swapping-with-donut 3 22 56

Travis Random perturbation 29 58 86
Location swapping 24 53 82
Donut masking 16 47 83
Location-swapping-with-donut 5 32 73

Wake Random perturbation 32 63 84
Location swapping 23 56 83
Donut masking 20 53 81
Location-swapping-with-donut 8 40 74

Note: The percent values indicate the percent of all masked locations that
have at least a k-value (nearest neighbors) of 20, 50, or 100.

Figure 7. The illustration of road proximity analysis. The dis-
tances to the nearest road from the (b) original locations and
from the (b) masked locations are compared to examine
whether the condition of road proximity was changed after
masking the original locations.

Table 3. Summary of land cover agreement before and after
displacement.
County Masking technique Percent correctly classified

Jackson Random perturbation 81.41
Location swapping 89.38
Donut masking 82.03
Location-swapping-with-donut 90.00

Travis Random perturbation 79.74
Location swapping 87.85
Donut masking 78.32
Location-swapping-with-donut 86.92

Wake Random perturbation 80.14
Location swapping 84.91
Donut masking 77.47
Location-swapping-with-donut 82.87

Note: The values represent the percent of displaced locations that were
placed in an area of the same land cover type as the initial point location.
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agreement between unmasked points and the four geo-
masking techniques. The results indicate that the loca-
tion swapping techniques have higher percentage
agreement in land cover than the random displacement
methods, and therefore, are more effective masking
methods with regard to preserving spatial patterns.

For road proximity analysis, the CDFs representing
distance distribution of original locations and masked
locations are presented in Figure 8 for each county. The
CDFs indicate how the proportion of the masked and
unmasked locations increases with distance from the
nearest road. Nearly 100% of masked and unmasked
locations can be found within 800 m of the roads.
However, the results in Figure 8 show that the location
swapping and location-swapping-with-donut techniques
exhibit a similar distance distribution pattern for the
unmasked locations in all three counties. In other
words, the location swapping techniques preserve the
distance distribution pattern of the original locations
more effectively than the random methods.

Preserving spatial patterns of the original locations

Average nearest-neighbor analysis revealed that each
method is able to preserve clustered spatial pattern of
the unmasked locations (Table 4). However, the loca-
tion swapping methods create clustered distributions
that are more similar to the clustered pattern of the
unmasked locations (i.e., the location swapping meth-
ods have nearest-neighbor indices that are closer to
the indices for the unmasked locations). This is true
for both Euclidean distances and Manhattan
distances.

Ripley’s K function analysis, which is also a measure
of dispersion, illustrated again that all tested methods
are able to preserve spatial pattern over a range of
distance (Figures 9–11). However, the location swap-
ping methods are more effective because they exhibit
cluster patterns that are more similar to the unmasked
locations.

The reason for the greater effectiveness of the loca-
tion swapping and location-swapping-with-donut is
that these two techniques can reflect the fact that
there are more residential locations along the roads
and they are more spatially clustered, as is the distribu-
tion of real residential address points. Through these
two methods, the masked locations will be positioned
at existing locations that are more likely adjacent to the
roads. However, the random displacement version
techniques cannot ensure the assignment of the
masked locations at existing addresses, which will dis-
turb the road proximity distribution.

Conclusions

When locations of individual-level health data are
published (e.g., maps), it is possible to determine
the identity of these individuals using reverse

Figure 8. Road proximity cumulative distribution function
(CDF) for the three study areas.
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geocoding methods. Therefore, individual-level health
data cannot be released unless the locations have been
modified so as to maintain patient privacy. The pre-
vailing method for protecting patient privacy is aggre-
gation of data by regions that are larger than zip code
regions, such as counties. Although the data aggrega-
tion method can preserve privacy, the cost is loss of
high-resolution spatial information that can hinder

the effectiveness of disease mapping or cluster detec-
tion. A weakness of present geographic masking tech-
niques is the displacement of masked locations to
improbable locations creating distribution patterns
that are different from the original distribution of
the unmasked data.

To address this weakness, we developed a new geo-
graphic masking technique referred to as “location swap-
ping.” The concept of spatial k-anonymity was employed
to quantify the probability of discovery. The spatial
k-anonymity analysis results demonstrated that the loca-
tion swapping techniques are more effective than random
perturbation techniques in prohibiting re-identification.
Nearest neighbor and Ripley’s K analyses indicate that
location swapping results in cluster patterns more similar
to the pattern of unmasked data than do randommethods.

The land cover association analysis results revealed
that the location swapping techniques can provide dis-
tribution of masked locations that are more similar in
geography (land cover types) than random methods.
Results of road proximity analyses indicate that loca-
tion swapping techniques preserve distance distribu-
tion patterns that are also more similar to distribution
patterns of the unmasked locations. The land cover and
distance distribution results can reduce the probability
of re-identifying patient locations.

The location swapping methods provide a more
realistic scenario in terms of the displacement location
selection for masking. Because masked locations

Table 4. Average nearest-neighbor analysis for each county.

Analysis – nearest-neighbor index
Jackson
County

Travis
County

Wake
County

Unmasked
locations

Euclidean
distance

0.266342 0.535445 0.647375

Manhattan
distance

0.333146 0.672769 0.813488

Masked
location
nearest-
neighbor
index

Random
perturbation

Euclidean
distance

0.298347 0.571933 0.694749

Manhattan
distance

0.376966 0.717667 0.870106

Location
swapping

Euclidean
distance

0.257013 0.531830 0.632273

Manhattan
distance

0.324722 0.664676 0.783299

Donut
masking

Euclidean
distance

0.300909 0.596298 0.697118

Manhattan
distance

0.377925 0.745679 0.873021

Location-
swapping-
with-donut

Euclidean
distance

0.258203 0.526755 0.635808

Manhattan
distance

0.323956 0.660780 0.795398

Notes: Average nearest neighbor calculates a nearest-neighbor index based
on the average distance from each feature to its nearest-neighboring
feature. If the index is <1, the pattern exhibits clustering pattern. If the
index is >1, the pattern exhibits dispersion pattern.

Figure 9. Jackson County Ripley’s K function. L values are equal to the distance being considered. If the observed curve is higher
than the expected curved and at the same time higher than the high confidence envelope, the pattern is clustered with high
statistical confidence level (p ≤ 0.01 for the confidence envelope).
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cannot be placed in bodies of water or in uninhabited
places, location swapping provides an additional filter
to ensure masked locations fall within predefined areas
of interest.

The results of this study offer a geomasking technique
that provides greater anonymity than do random meth-
ods, and that results in spatial patterns that are more
similar to the pattern of unmasked locations. However,

Figure 10. Travis County Ripley’s K function. L values are equal to the distance being considered. If the observed curve is higher
than the expected curved and at the same time higher than the high confidence envelope, the pattern is clustered with high
statistical confidence level (p ≤ 0.01 for the confidence envelope).

Figure 11. Wake County Ripley’s K function. L values are equal to the distance being considered. If the observed curve is higher
than the expected curved and at the same time higher than the high confidence envelope, the pattern is clustered with high
statistical confidence level (p ≤ 0.01 for the confidence envelope).
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no geomasking technique is 100% foolproof. If a map
hacker is somehow able to determine the buffer distance
used to relocate a point, it might be possible to re-identify
the original locations. While location swapping provides
greater anonymity than random methods (higher spatial
k values), it is not a perfect solution, yet. Future research
on geomasking should test the resistance to reverse geo-
coding to disclosure of the parameters of geographic
masking techniques for improved location swapping.
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